Noticias de la Industria

¿Cómo está cambiando la tecnología de los rodamientos?

Simple pero sofisticado, el humilde rodamiento de bolas es posiblemente uno de los mayores avances tecnológicos de todos los tiempos.  Sin embargo, la historia está lejos de estar escrita: en las últimas décadas el diseño de los rodamientos ha avanzado significativamente. La necesidad de reducir la fricción, una mayor capacidad de carga, una vida útil más larga y una reducción del tamaño ha llevado a nuevos usos de materiales, técnicas de lubricación avanzadas y análisis informáticos sofisticados. Aquí Chris Johnson, director general del proveedor especializado en rodamientos SMB Bearings, reflexiona sobre tres interesantes novedades que se han apoderado de la industria. 

Los rodamientos se utilizan prácticamente en todos los tipos de maquinaria rotativa. Desde equipos aeroespaciales y de defensa hasta líneas de producción de alimentos y bebidas, la demanda de estos componentes está aumentando. Fundamentalmente, los ingenieros de diseño exigen cada vez más soluciones más pequeñas, más ligeras y más duraderas para satisfacer incluso las condiciones ambientales más exigentes.

Ciencia de los Materiales

La reducción de la fricción es un área clave de investigación para los fabricantes. Muchos factores afectan la fricción, como las tolerancias dimensionales, el acabado de la superficie, la temperatura, la carga operativa y la velocidad. A lo largo de los años se han logrado avances significativos en los aceros para rodamientos. Los aceros para rodamientos modernos y ultralimpios contienen menos partículas no metálicas y más pequeñas, lo que proporciona a los rodamientos de bolas una mayor resistencia a la fatiga por contacto.

Modern steel making and de-gassing techniques produce steel with lower levels of oxides, sulphides and other dissolved gases while better hardening techniques produce harder and more wear-resistant steels. Advances in manufacturing machinery enable manufacturers of precision bearings to maintain closer tolerances in bearing components and produce more highly polished contact surfaces, all of which reduce friction and improve life ratings.

New 400 grade stainless steels (X65Cr13) have been developed to improve bearing noise levels as well as high nitrogen steels for greater corrosion resistance. For highly corrosive environments or temperature extremes, customers can now choose from a range of 316 grade stainless steel bearings, full ceramic bearings or plastic bearings made from acetal resin, PEEK, PVDF or PTFE. As 3D printing becomes more widely used, and therefore more cost-effective, we see increasing possibilities for production of non-standard bearing retainers in small quantities, something that will be useful for low volume requirements of specialist bearings.

Lubrication

Lubrication may have garnered the most attention. With 13 per cent of bearing failure attributed to lubrication factors, bearing lubrication is a fast-evolving area of research, supported by academics and industry alike. There are now many more specialist lubricants thanks to a number of factors: a wider range of high-quality synthetic oils, a greater choice of the thickeners used in grease manufacture and a greater variety of lubricant additives to provide, for example, higher load capabilities or greater corrosion resistance. Customers can specify highly-filtered low noise greases, high speed greases, lubricants for extreme temperatures, waterproof and chemically-resistant lubricants, high-vacuum lubricants and cleanroom lubricants.

Computerised analysis

Another area where the bearing industry has made great strides is through the use of bearing simulation software. Now, bearing performance, life and reliability can be extended beyond what was achieved a decade ago without undertaking expensive time-consuming laboratory or field tests. Advanced, integrated analysis of rolling element bearings can give unrivalled insight into bearing performance, enable optimal bearing selection and avoid premature bearing failure.

Advanced fatigue life methods can allow the accurate prediction of element and raceway stresses, rib contact, edge stress, and contact truncation. They also allow full system deflection, load analysis and bearing misalignment analysis. This will give engineers the information to modify the bearing design to better accommodate the stresses resulting from the specific application.

Another clear advantage is that simulation software can reduce the amount of time and resources spent on the testing phase. This not only speeds up the development process but also reduces the expenses in the process.

It’s clear that new materials science developments along with advanced bearing simulation tools will provide engineers with the insight required to design and select bearings for optimum performance and durability, as part of a whole system model. Continued research and development in these fields will be crucial in ensuring bearings continue to push the boundaries in the years to come.